
Operating System Nouhad J. Rizk 1
1

Lab 5

The UNIX Programming
Environment

Operating System Nouhad J. Rizk 2
2

Introduction to Programming in UNIX

• One of the great strengths of the UNIX operating system is its
ability to support programming. The UNIX environment
supports the following types of programming:

– Shell Programming
• Programming shell scripts with the syntax and commands that are

supported by a native UNIX shell. Examples include sh, ksh, csh,
bash and many others.

– Interpreted Programming Languages
• Programming in a language syntax that is fed into a larger UNIX

program (known as an interpreter) and executed by that program.
Examples include sed, awk and perl.

– Compiled Programming Languages
• Programming in a language syntax that is compiled into object code

and run as a binary executable program. Examples include C, C++,
FORTRAN, PASCAL, assembler, etc.

• In this section we will expand on the shell programming
concepts introduced in Lab 4. We will also introduce the
interpreted languages of sed, awk and perl.

Operating System Nouhad J. Rizk 3
3

Shell Programming – using arguments

• In the last section, we introduced the concept of shell scripts. We can
also use the shell as a programming environment by taking advantage
of the constructs that are built into the shell scripting language. In this
section, we will learn some of these basic constructs to expand on our
shell programming abilities.

• Also, in the last section, we learned about shell variables. These are
variables that are defined within the shell script. Arguments are
special shell variables that get passed to the program at the execution of
the command. In many of the UNIX commands we have learned, we
have been passing arguments to programs. If you recall, the standard
format of a command is:
$ command –options argument1 argument2 ... etc

• In order to use arguments, the format is simply ${n} with n being the
position of the argument in the command. Consider the following
simple program below:
$ cat arg_script

echo I have a dog named $1

echo I have a spouse named $2

echo I have a dad named $3

$ ksh arg_script daisy india jack

I have a dog named daisy

I have a spouse named india

I have a dad named jack

$

Operating System Nouhad J. Rizk 4
4

Shell Programming – read statement

• Arguments are very useful for programming in the context of
UNIX-style commands. However, like any programming
language, shell scripts can also read input interactively from
users. In the example below, the same program that read
arguments now presents an interactive dialogue with the user:
$ cat read_script

echo 'What is the name of your dog?'

read dog

echo 'You better take' $dog 'for a walk!'

$ ksh read_script

What is the name of your dog?

daisy

You better take daisy for a walk!

$

• The read command utilizes standard input. By default, as in
this example, this means input from the screen. However, this
can be redirected to use input from other sources such as a file.

Operating System Nouhad J. Rizk 5
5

Shell Programming – Integer Arithmetic Operations using expr

• By using the expr statement, simple integer arithmetic
can be performed inside a shell program. For an
example, we can write a relatively simple and useful shell
script that will convert blocks of disk to megabytes. In
AIX, a block of disk is 512 bytes. Two blocks are equal
to 1024 bytes, which is also known as a kilobyte.
Therefore, if we divide the number of blocks by 2048,
then we get the number of megabytes. The script below
does this:
$ cat conv

expr $1 / 2048

$ conv 10000

4

$

• A few things of note about the script above. First, I used
the chmod +x command to make the file conv executable
so that I did not need to use the ksh command to execute
it. Also, the expr returns an integer number, so the
resulting number in megabytes is rounded.

Operating System Nouhad J. Rizk 6
6

Shell Programming – Conditional Operations using if

• The conv command from the last exercise is somewhat useful
in aiding the calculation of disk space on AIX systems.
However, let’s say that this program could work better if it
could convert either from blocks to megabytes or vice-versa.

• In order to do this, we will need to calculate the formula
depending upon the type of input. This requires what is known
as conditional processing. The most simple form of conditional
processing is the if statement.

• The format of the if statement is as follows:

if test condition

then

statements (executed only on true condition)

else

statements (executed only on false condition)

fi

• Note: If statements can be nested to check for multiple
conditions. This will be done in the updated conv program on
the next page.

Operating System Nouhad J. Rizk 7
7

Shell Programming – Updated conv program using if statements

• The updated conv program uses nested if statements to check for
blocks, mb, or invalid data:
$ cat conv

if test "$1" = "blocks"

then

expr $2 / 2048

else

if test "$1" = "mb"

then

expr $2 * 2048

else

echo You have entered invalid data:

echo 'The format is: conv [blocks|mb] number'

fi

fi

$ conv blocks 10000

4

$ conv mb 4

8192

$ conv foo

You have entered invalid data:

The format is: conv [blocks|mb] number

$

Operating System Nouhad J. Rizk 8
8

Shell Programming – A look at the ~/.profie script

• We can also use the if statement in the ~/.profile script.
In the statement below, the script checks for the existence
of new mail and executes a mail session if there is some:
$ cat ~/.profile

PATH=/bin:/usr/local/bin:/usr/bin:/sbin:_

/usr/local/etc/httpd:/etc:/usr/ucb:$HOME/bin:/usr/bin/X
11:.

export PATH

TERM=ibm3151

if [`tty` = /dev/tty0]

then

export TERM=ibm3151

else

export TERM=vt100

fi

set -o vi

if [-s "$MAIL"]

then echo "$MAILMSG"

fi

EDITOR=/usr/bin/vi

export EDITOR

PS1='$ '

Operating System Nouhad J. Rizk 9
9

Interpreted Programming Languages – sed, awk and perl

• As mentioned earlier, the UNIX programming environment
supports interpreted programming language scripts. Three very
popular languages in the UNIX environment are sed, awk and
perl. Below is a brief explanation of each:

– sed – stands for stream editor. It is mostly used for repetitive
changes in text patterns as a “find and replace”. It can be issued
interactively from the vi editor or via the command line.

– awk – named for its authors Aho, Weinberg and Kernighan of Bell
Labs. Specializes in formatting text from multiple input sources.
Serves as a great tool for report generation. Very similar to C
language in structure (developed by the same people).

– perl – stands for practical extraction and reporting language,
developed by Larry Wall. Full blown programming language that
combines the features and functions of C, sed, awk and shell
programming. There are many different ways to perform the same
function using perl. Available on multiple platforms as public
domain software.

• There are entire books and courses dedicated to each one these
languages. However, as an introduction, in this class we will
write a very simple script in each language.

Operating System Nouhad J. Rizk 10
10

An example of sed – text substitution

• People most commonly use sed for global substitutions in text
files. Below is a simple example:
$ cat syllabus

This file contains the spring syllabus for MGT6346

which will be taught in the spring semester.

This spring, I will spring into action as

I teach this class in the spring.

$ sed s/spring/summer/ syllabus > summer_syllabus

$ cat summer_syllabus

This file contains the summer syllabus for MGT6346

which will be taught in the summer semester.

This summer, I will spring into action as

I teach this class in the summer.

$

• Notice that only one occurrence of “spring” was substituted on
each line. To substitute all occurrences, specify the letter g in
the criteria for a global substitution:
$ sed s/spring/summer/g syllabus > summer_syllabus

Operating System Nouhad J. Rizk 11
11

An example of awk – formatting the output of ls

• In the UNIX environment, awk (using the –f option) is often
used to take the output from a command and format it:
$ cat awk_ls

BEGIN {print "Bytes" "\t" "Filename"} (sets up header)

{sum += $5;print $5 "\t" $9} (Loops through input)

END {print "Total Bytes are "sum} (sets up footer)

$ ls -l | awk -f awk_ls

Bytes Filename

101 awk_ls

172 summer_syllabus

172 syllabus

15 test

Total Bytes are 460

$

• Although awk is still commonly used, awk programs that
interact with UNIX commands are generally being replaced by
the more robust perl language. The availability of awk to perl
conversion utilities has helped to facilitate this migration.

Operating System Nouhad J. Rizk 12
12

An example of perl –interactively listing home directory files

• An example of how perl can interact with commands (as we
have seen with awk) and with UNIX commands (as we have
seen with shell scripting) can be seen in the program below:
$ cat perl_dir

#!/usr/bin/perl

print "Enter the username of the home directory you
would like to view: ";

chop($hdir = <STDIN>);

chdir(~$hdir) || die "Invalid username"

foreach(<*>) {

print "$_\n";

}

$

• A topic within the world of perl that is outside the scope of this
course (but worth mentioning) is the use of macros. One of the
things that makes perl so powerful is that perl macros can be
written on one platform and ported to others. The use of perl
macros is one of the reasons that it is becoming a popular
scripting language for web-based applications.

	Lab 5The UNIX Programming Environment
	Introduction to Programming in UNIX
	Shell Programming – using arguments
	Shell Programming – read statement
	Shell Programming – Integer Arithmetic Operations using expr
	Shell Programming – Conditional Operations using if
	Shell Programming – Updated conv program using if statements
	Shell Programming – A look at the ~/.profie script
	Interpreted Programming Languages – sed, awk and perl
	An example of sed – text substitution
	An example of awk – formatting the output of ls
	An example of perl –interactively listing home directory files

